UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/33

Paper 3 (Advanced Practical Skills 1), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9701	33
		ł	

Qu	Question Sections		Indicative material		
1	(a)	PDO Recording	I Thermometer readings for all experiments recorded to 0.0 or 0.5°C. (At least one recorded to 0.5°C.)	1	
		ACE Interpretation	II Calculation of all temperature changes correct.	1	
		MMO Quality	Award III for a temperature rise followed by constant temperature (within 0.5°C).	1	
			Award IV and V for a maximum rise within 0.5°C of supervisor.	1	
			Award IV for a maximum rise within 1.0°C of supervisor.	1	
			Award VI and VII for the experiment 3 temperature rise within 0.5°C of supervisor.	1	
			Award VI for the experiment 3 temperature rise within 1.0°C of supervisor.	1	[7]
	(b)	PDO Layout	I Axes correct and labelled: temperature change/ T change/∆T and volume/vol/V (of) sodium hydroxide/NaOH/ FA 1 and correct units /°C or (°C) or 'in °C'; /cm ³ or (cm ³) (allow NaOH in cm ³)	1	
			II Scales chosen so that graph occupies at least half the available length for <i>x</i> - and <i>y</i> -axes.	1	
			III Plotting – all points accurate to within half a small square and in the correct square.	1	
			IV Draws two straight lines of best fit which intersect.	1	[4]
	(c)	ACE Interpretation	Reads to nearest $\frac{1}{2}$ square to 1 or 2 dp volume of FA 1 and temperature rise from intercept. Do not award if ΔT at intercept (or point) < max ΔT from table unless candidate has clearly indicated the max ΔT is anomalous.		[1]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9701	33

IIThe temperature/temperature change stays constant/decreases when all acid/limiting reagent has reacted/excess NaOH is added.1(e)ACE InterpretationIVolume used in calculation is 65 cm³1(f)ACE InterpretationIHeat energy change calculated using candidate's value for ΔT correct to 3 or 4 sf1(f)ACE Interpretation25 × 2 = 0.05 100011(g)ACE InterpretationICandidate's answer to (e) Candidate's answer to (f)1PDO DisplayIICorrect calculation, conversion J to kJ and negative sign to 3 or 4 sf1(h)ACE ConclusionsSo that rise in temperature is proportional to increase in energy produced/change in volume gives different change in temperature for same energy produced/ increase in volume requires increase in energy for same temperature rise.1(i)PDO DisplayINumber moles NaOH = number moles HCl (stated or clearly shown)1ACE InterpretationIICalculates or expression for Concentration = 0.05 (cef from (f)) answer to (c)/1000 If answer only, award mark if correct to 3 or 4 sf1(i)ACE ImprovementsUse more concentrated solutions. (allow use 4 5 cm³ water each time) Ignore all references to heat energy losses.1(k)ACE ConclusionsITwo straight intersecting lines (positive followed by zero gradient).1	(d)	ACE Conclusions	I The temperature/temperature change increases as more reaction/more hydrochloric acid/sodium hydroxide reacts/as more water formed.	1	
InterpretationIIIHeat energy change calculated using candidate's value for ΔT correct to 3 or 4 sf1(f)ACE Interpretation25 × 2 = 0.05 10001(g)ACE 			constant/decreases when all acid/limiting reagent		[2]
(f) ACE Interpretation 25 × 2 = 0.05 1000 1 [(g) ACE Interpretation I Candidate's answer to (e) Candidate's answer to (f) 1 [(h) ACE Conclusions II Correct calculation, conversion J to kJ and negative sign to 3 or 4 sf 1 [(h) ACE Conclusions So that rise in temperature is proportional to increase in energy produced/change in volume gives different change in temperature for same energy produced/ increase in volume requires increase in energy for same temperature rise. 1 1 (i) PDO Display I Number moles NaOH = number moles HCI (stated or clearly shown) 1 1 (ii) PDO Display I Calculates or expression for Concentration = 0.05 (ccf from (f)) answer to (c)/1000 If answer only, award mark if correct to 3 or 4 sf 1 (j) ACE Improvements Use more concentrated solutions. (allow use ≤ 5 cm ³ water each time) Ignore all references to heat energy losses. 1 [(k) ACE Conclusions I Two straight intersecting lines (positive followed by zero gradient). 1 1	(e)		I Volume used in calculation is 65 cm ³	1	
Interpretation1000[(g)ACE InterpretationICandidate's answer to (e) Candidate's answer to (f)1PDO DisplayIICorrect calculation, conversion J to kJ and negative sign to 3 or 4 sf1(h)ACE ConclusionsSo that rise in temperature is proportional to increase in energy produced/change in volume gives different change in temperature for same energy produced/ increase in volume requires increase in energy for same temperature rise.1(i)PDO DisplayINumber moles NaOH = number moles HC1 (stated or clearly shown)1ACE InterpretationIICalculates or expression for Concentration = 0.05 (ecf from (f)) answer to (c)/1000 If answer only, award mark if correct to 3 or 4 sf1(i)ACE ImprovementsUse more concentrated solutions. (allow use ≤ 5 cm³ water each time) Ignore all references to heat energy losses.1(k)ACE ConclusionsITwo straight intersecting lines (positive followed by zero gradient).1			6, 6	1	[2]
InterpretationInterpretationCandidate's answer to (f)PDO DisplayIICorrect calculation, conversion J to kJ and negative sign to 3 or 4 sf1(h)ACE ConclusionsSo that rise in temperature is proportional to increase in energy produced/change in volume gives different 	(f)			1	[1]
Image and the second secon	(g)			1	
Conclusionsin energy produced/change in volume gives different change in temperature for same energy produced/ increase in volume requires increase in energy for same temperature rise.[](i)PDO DisplayINumber moles NaOH = number moles HCl (stated or clearly shown)1ACE InterpretationIICalculates or expression for Concentration = 0.05 (ecf from (f)) answer to (c)/1000 If answer only, award mark if correct to 3 or 4 sf1(j)ACE ImprovementsUse more concentrated solutions. (allow use ≤ 5 cm³ water each time) Ignore all references to heat energy losses.1(k)ACE ConclusionsITwo straight intersecting lines (positive followed by zero gradient).1		PDO Display	,	1	[2]
ACE InterpretationII Calculates or expression for Concentration = 0.05 (ecf from (f)) answer to (c)/1000 If answer only, award mark if correct to 3 or 4 sf1(j)ACE ImprovementsUse more concentrated solutions. (allow use ≤ 5 cm³ water each time) Ignore all references to heat energy losses.1(k)ACE ConclusionsITwo straight intersecting lines (positive followed by zero gradient).1	(h)		in energy produced/change in volume gives different change in temperature for same energy produced/ increase in volume requires increase in energy for	1	[1]
Interpretation Interpretation Concentration = 0.05 (ecf from (f)) answer to (c)/1000 [] (j) ACE Improvements Use more concentrated solutions. (allow use ≤ 5 cm³ water each time) 1 (k) ACE Conclusions I Two straight intersecting lines (positive followed by zero gradient). 1	(i)	PDO Display		1	
Improvements (allow use ≤ 5 cm³ water each time) Ignore all references to heat energy losses. [(k) ACE Conclusions I Two straight intersecting lines (positive followed by zero gradient). 1		-	Concentration = 0.05 (ecf from (f)) answer to (c)/1000	1	[2]
Conclusions by zero gradient).	(j)	-	(allow use ≤ 5 cm ³ water each time)	1	[1]
II Same ΔT and V shown as in (b). 1 [.	(k)			1	
			II Same ΔT and V shown as in (b).	1	[2]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9701	33

2	(a)	MMO	(i)	I Any named mineral acid or formula or	1	
		Decisions		(acidified) potassium dichromate Do not allow any reagent suitable for testing cations or more than one reagent.		
		PDO Recording	(ii)	 II Tabulates evidence of 3 tests carried out with no repeat headings. Only consider observations with acid or dichromate. 	1	
		MMO Collection		III Bubbles/effervescence in FA 4.	1	
				IV Slower effervescence in FA 3 than FA 4 or FA 3 turns green and FA 5 stays orange if dichromate used.	1	
		MMO Decisions		V Appropriate test with positive result used to test for either gas.	1	
		ACE Conclusions		 VI All three ions correct from suitable observations. FA3 is a sulfite. FA4 is a carbonate. FA5 is a sulfate. (or correct formulae) 	1	[6]
	(b)	MMO Collection	(i)	I FA 4 + FA 6 white ppt and FA 5 + FA 6 white ppt.	1	
				II FA 6 + NaOH white ppt, soluble in excess sodium hydroxide.		
				III Brown gas		
				IV Gas relights glowing splint.		
				V Yellow residue or crackling/decrepitating.		
		ACE Conclusions		VI Gas identified as oxygen or as NO ₂ from observations.		[6]
		ACE Conclusions	(ii)	Lead/Pb ²⁺ provided correct observations with FA 6 + NaOH and FA 6 + FA 5 (sulfate).	1	[1]
		MMO Decisions	(iii)	I Add HC l / H ₂ SO ₄ / KI / K ₂ CrO ₄ / NH ₃ *	1	
		MMO Collection		II white ppt/white ppt/yellow ppt/yellow ppt/white ppt insoluble in excess.	1	
				* If not Pb^{2+} in (ii) but one of Al^{3+} , Ba^{2+} , Ca^{2+} , Zn^{2+} allow suitable reagent mark: K_2CrO_4 for Ba^{2+} and NH_3 for the other three. However, observation must be correct for Pb ²⁺ .		[2]
			-			<u> </u>